
HASH TABLES

OVERVIEW

OVERVIEW

▪ The problem of storing and retrieving information has

been studied for many years

▪ Given a list of names and phone numbers, how can we

quickly find a person’s phone number given their name?

▪ The classic solution is to use array based binary search:

▪ Store names and phone numbers in an array N long

▪ Sort these records by name in O(Nlog2N) time

▪ Use binary search to find data the array in O(log2N) time

CSCE 2014 - Programming Foundations II 2

OVERVIEW

The preprocessing phase:

CSCE 2014 - Programming Foundations II 3

Index Name Phone

0 Brown, Jim 521-9876

1 Jones, Tom 521-1234

2 Taylor, Brian 521-2121

3 Johnson, John 521-5500

4 Smith, John 521-3456

5 Williams, Anne 521-1020

6 Davis, Tony 521-7384

7 Smith, Lisa 521-2468

8 White, Betty 521-6543

Index Name Phone

0 Brown, Jim 521-9876

1 Davis, Tony 521-7384

2 Johnson, John 521-5500

3 Jones, Tom 521-1234

4 Smith, John 521-3456

5 Smith, Lisa 521-2468

6 Taylor, Brian 521-2121

7 White, Betty 521-6543

8 Williams, Anne 521-1020

Sort

array

Unsorted array Sorted array

OVERVIEW

The search phase:

CSCE 2014 - Programming Foundations II 4

Index Name Phone

0 Brown, Jim 521-9876

1 Davis, Tony 521-7384

2 Johnson, John 521-5500

3 Jones, Tom 521-1234

4 Smith, John 521-3456

5 Smith, Lisa 521-2468

6 Taylor, Brian 521-2121

7 White, Betty 521-6543

8 Williams, Anne 521-1020

Binary search for

Jones, Tom starts

at (0+8)/2=4

Sorted array

OVERVIEW

The search phase:

CSCE 2014 - Programming Foundations II 5

Index Name Phone

0 Brown, Jim 521-9876

1 Davis, Tony 521-7384

2 Johnson, John 521-5500

3 Jones, Tom 521-1234

4 Smith, John 521-3456

5 Smith, Lisa 521-2468

6 Taylor, Brian 521-2121

7 White, Betty 521-6543

8 Williams, Anne 521-1020

Binary search for

Jones, Tom goes to

index (0+4)/2=2

Sorted array

OVERVIEW

The search phase:

CSCE 2014 - Programming Foundations II 6

Index Name Phone

0 Brown, Jim 521-9876

1 Davis, Tony 521-7384

2 Johnson, John 521-5500

3 Jones, Tom 521-1234

4 Smith, John 521-3456

5 Smith, Lisa 521-2468

6 Taylor, Brian 521-2121

7 White, Betty 521-6543

8 Williams, Anne 521-1020

Jones, Tom phone

record is found at

index (2+4)/2=3

Sorted array

OVERVIEW

What happens if we insert data?

CSCE 2014 - Programming Foundations II 7

Index Name Phone

0 Brown, Jim 521-9876

1 Davis, Tony 521-7384

2 Jackson, Janet 521-1111

3 Johnson, John 521-5500

4 Jones, Tom 521-1234

5 Smith, John 521-3456

6 Smith, Lisa 521-2468

7 Taylor, Brian 521-2121

8 White, Betty 521-6543

9 Williams, Anne 521-1020

Resort

array

Array with new

phone number

Sorted array

Index Name Phone

0 Brown, Jim 521-9876

1 Davis, Tony 521-7384

2 Johnson, John 521-5500

3 Jones, Tom 521-1234

4 Smith, John 521-3456

5 Smith, Lisa 521-2468

6 Taylor, Brian 521-2121

7 White, Betty 521-6543

8 Williams, Anne 521-1020

9 Jackson, Janet 521-1111

OVERVIEW

What happens if we delete data?

CSCE 2014 - Programming Foundations II 8

Index Name Phone

0 Brown, Jim 521-9876

1 Davis, Tony 521-7384

2 Jackson, Janet 521-1111

3 Johnson, John 521-5500

4 Jones, Tom 521-1234

5 Smith, Lisa 521-2468

6 Taylor, Brian 521-2121

7 White, Betty 521-6543

8 Williams, Anne 521-1020

Resort

array

Delete phone

number from array

Sorted array

Index Name Phone

0 Brown, Jim 521-9876

1 Davis, Tony 521-7384

2 Jackson, Janet 521-1111

3 Johnson, John 521-5500

4 Jones, Tom 521-1234

5 Smith, John 521-3456

6 Smith, Lisa 521-2468

7 Taylor, Brian 521-2121

8 White, Betty 521-6543

9 Williams, Anne 521-1020

OVERVIEW

▪ How much work does insertion require?

▪ Shift data records down to make room for new data O(N)

▪ Put new record into the hash table O(1)

▪ How much work does deletion require?

▪ Remove record from the hash table O(1)

▪ Shift data records up to fill in empty space O(N)

▪ When there are a large number of additions or deletions

the classic binary search approach is simply too slow

CSCE 2014 - Programming Foundations II 9

OVERVIEW

▪ The idea of a hash table is to quickly store and search for

data in an array without keeping it in sorted order

▪ To do this, we define a hash function based on the search

key to decide where the data should be stored in the array

and we jump directly to that location

CSCE 2014 - Programming Foundations II 10

▪ For example, we know

John Smith belongs in

location 02 so that is

where we store his phone

number, and where we

look for his phone number

(image from Wikipedia)

OVERVIEW

▪ How do hash tables work?

▪ First, we must define a “hash function” on the data to

decide where the data should be stored in the array

▪ When we insert data, we go to the hash location, and if it is

currently empty, we save the record

▪ When we search for data, we go to the hash location, and

if it is not empty, we retrieve the record

▪ Because the hash function uses the content of the record

to calculate the hash location, hash tables are often called

“content accessible memory” or “associative memory”

CSCE 2014 - Programming Foundations II 11

OVERVIEW

Data insertion phase

CSCE 2014 - Programming Foundations II 12

Index Name Phone

0

1 White, Betty 521-6543

2

3

4

5

6

7

8

Assume the value of

hash(“White, Betty”) = 1

Since this is empty we

store the phone number

OVERVIEW

Data insertion phase

CSCE 2014 - Programming Foundations II 13

Index Name Phone

0

1 White, Betty 521-6543

2

3

4

5

6 Jones, Tom 521-1234

7

8

Assume the value of

hash(“Jones, Tom”) = 6

Since this is empty we

store the phone number

OVERVIEW

Data search phase

CSCE 2014 - Programming Foundations II 14

Index Name Phone

0

1 White, Betty 521-6543

2

3

4

5

6 Jones, Tom 521-1234

7

8

Assume the value of

hash(“White, Betty”) = 1

This location is not

empty we so can

retrieve the phone

number

OVERVIEW

Data search phase

CSCE 2014 - Programming Foundations II 15

Index Name Phone

0

1 White, Betty 521-6543

2

3

4

5

6 Jones, Tom 521-1234

7

8

Assume the value of

hash(“Claus, Santa”) = 4

This location is currently

empty so no phone

number is returned

OVERVIEW

▪ In the next section we describe how hash functions can be

created for different data types

▪ Integers, floats, strings

▪ In the following sections, we describe four techniques for

implementing hash tables

▪ Linear probing

▪ Secondary hashing

▪ Hash buckets

▪ Separate chaining

CSCE 2014 - Programming Foundations II 16

HASH TABLES

HASH FUNCTIONS

HASH FUNCTIONS

▪ The “magic” of hash tables is in the hash function

▪ Goal is to use the contents of the data to calculate an array
index in range [0..N-1]

▪ For integer data, the solution is to use modulo operator

▪ Hash(num) = num % N

▪ We can spread the data out using more complex formulas

▪ Hash(num) = (a*num + b) % N

▪ Hash(num) = (a*num*num + b*num + c) % N

CSCE 2014 - Programming Foundations II 18

HASH FUNCTIONS

▪ For float data, convert to integer and use modulo operator

▪ Hash(num) = int(num * 1000) % N

▪ We can also use more creative functions

▪ Hash(num) = int(N * sqrt(num)) % N

▪ We need to be careful to avoid negative values

▪ Hash(num) = abs(num * 1000) % N

▪ Hash(num) = int(N * sqrt(fabs(num))) % N

▪ Hash(num) = int(N * (sin(num) + 1)) % N

CSCE 2014 - Programming Foundations II 19

HASH FUNCTIONS

▪ For string data it is possible to create a wide range of hash
functions based on the ASCII codes of letters

▪ One solution is to calculate the sum of the ASCII codes for
letters in the word

▪ Hash(“cat”) = (99 + 97 + 116) % N

▪ This can be easily implemented

int hash = 0;

for (int i = 0; i < word.length(); i++)

hash = hash + word[i];

hash = hash % N

CSCE 2014 - Programming Foundations II 20

Letter order is ignored so

Hash(“cat”) = Hash(“act”)

HASH FUNCTIONS

▪ Or we can calculate the product of the ASCII codes for all

letters in the word

▪ Hash(“dog”) = (100 * 111 * 103) % N

▪ We can use any formula we like

▪ Hash(word) = (word[2] * 17 + word[3] * 42) % N

▪ Hash(word) = (word[1] * word[4] + word[0]) % N

▪ We need to be careful to avoid array index errors when

processing short strings with hard coded formulas above

CSCE 2014 - Programming Foundations II 21

Letter order is ignored so

Hash(“dog”) = Hash(“god”)

HASH FUNCTIONS

▪ One popular option is to treat letters as digits base 26 and

convert string to integer

▪ Hash(“cat”) = 262 * (‘c’-’a’) + 26 * (‘a’-’a’) + (‘t’-’a’)) % N

int hash = 0;

for (int i = 0; i < word.length(); i++)

hash = 26 * hash + tolower(word[i]) – ‘a’;

hash = hash % N;

▪ This approach is very effective for using the whole [0..N-1]
range so strings are spread out in the hash table

CSCE 2014 - Programming Foundations II 22

Gives us a value

between 0..25

HASH FUNCTIONS

▪ One issue with hash functions is that different data values
may produce the same hash value

▪ This causes a “collision” when we try to insert data in a
location that is already occupied

▪ Assume N = 100, and Hash(num) = num % N

▪ Hash(1024) = 1024 % 100 = 24

▪ Hash(8024) = 8024 % 100 = 24

▪ Hash(24) = 24 % 100 = 24

• Hash tables must be implemented
to take care of possible collisions

CSCE 2014 - Programming Foundations II 23

This is a many-to-one

function because different

inputs can produce the

same output

HASH TABLES

LINEAR PROBING

LINEAR PROBING

• Linear probing is a popular technique for dealing with

collisions when inserting data into a hash table

• We calculate the hash value for the input data

• We look at that location in the hash table

• If the location is empty, we insert the data

• If the location is already occupied, we “probe” the next

locations until an empty location is found to insert data

• We use modulo operation on the table index to “wrap

around” when we reach bottom of table

▪ We will illustrate the insertion process using phone data

CSCE 2014 - Programming Foundations II 25

LINEAR PROBING

Data insertion phase

CSCE 2014 - Programming Foundations II 26

Index Name Phone

0

1 White, Betty 521-6543

2

3

4

5

6 Jones, Tom 521-1234

7

8

Assume that we have already

inserted two phone records

into the hash table

LINEAR PROBING

Data insertion phase

CSCE 2014 - Programming Foundations II 27

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3

4

5

6 Jones, Tom 521-1234

7

8

If hash(“Smith, John”) = 2 this

location is empty, so we can

insert this phone record

LINEAR PROBING

Data insertion phase

CSCE 2014 - Programming Foundations II 28

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3

4

5

6 Jones, Tom 521-1234

7

8

If hash(“Brown, Jim”) = 1 this

location is full, so we look at

next location in table

LINEAR PROBING

Data insertion phase

CSCE 2014 - Programming Foundations II 29

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3

4

5

6 Jones, Tom 521-1234

7

8

This location is also full, so we

look at next location in table

LINEAR PROBING

Data insertion phase

CSCE 2014 - Programming Foundations II 30

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3 Brown, Jim 521-9876

4

5

6 Jones, Tom 521-1234

7

8

This location is empty, so we

store the phone record here

LINEAR PROBING

• How does search work with linear probing?

• We calculate the hash value for the data we are looking for

• We look at that location in the hash table

• If the location is empty, the data was not found

• If the location is not empty, we need to look at the record to

see if the name field matches

• If the name matches, we found the desired data

• If name does not match, we look at next locations until a

match is found or an empty location is found

• We will illustrate the search process using phone data

CSCE 2014 - Programming Foundations II 31

LINEAR PROBING

Data search phase

CSCE 2014 - Programming Foundations II 32

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3 Brown, Jim 521-9876

4

5

6 Jones, Tom 521-1234

7

8

Since hash(“Brown, Jim”) = 1

we look at this location, but the

name does not match so we

look at the next location

LINEAR PROBING

Data search phase

CSCE 2014 - Programming Foundations II 33

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3 Brown, Jim 521-9876

4

5

6 Jones, Tom 521-1234

7

8

This name at this location does

not match so we probe again

LINEAR PROBING

Data search phase

CSCE 2014 - Programming Foundations II 34

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3 Brown, Jim 521-9876

4

5

6 Jones, Tom 521-1234

7

8

The name at this location does

match so the record was found

LINEAR PROBING

Data search phase

CSCE 2014 - Programming Foundations II 35

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3 Brown, Jim 521-9876

4

5

6 Jones, Tom 521-1234

7

8

If hash(“Claus, Santa”) = 2 we

look at this location, but the

name does not match so we

look at the next location

LINEAR PROBING

Data search phase

CSCE 2014 - Programming Foundations II 36

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3 Brown, Jim 521-9876

4

5

6 Jones, Tom 521-1234

7

8

This name at this location does

not match so we probe again

LINEAR PROBING

Data search phase

CSCE 2014 - Programming Foundations II 37

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3 Brown, Jim 521-9876

4

5

6 Jones, Tom 521-1234

7

8

We come to an empty location

so there is no phone record for

“Claus, Santa” (too bad)

LINEAR PROBING

▪ How do we delete data when using linear probing?

▪ First we search the hash table to find location of record

▪ Next we overwrite the current data at that location with a

special “deleted value” like “Zzzz, Zzzz” 999-9999

▪ How does this effect insert and search?

▪ We need to adapt the insert algorithm to stop when an

empty location or a “deleted value” is found

▪ We need to adapt the search algorithm to continue

searching if a “deleted value” is found

CSCE 2014 - Programming Foundations II 38

LINEAR PROBING

Delete phase

CSCE 2014 - Programming Foundations II 39

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3 Brown, Jim 521-9876

4

5

6 Jones, Tom 521-1234

7

8

If hash(“Smith, John”) = 2 we

look at this location, and we

replace with Zzzz data

LINEAR PROBING

Data search phase

CSCE 2014 - Programming Foundations II 40

Index Name Phone

0

1 White, Betty 521-6543

2 Zzzz, Zzzz 999-9999

3 Brown, Jim 521-9876

4

5

6 Jones, Tom 521-1234

7

8

If hash(“Claus, Santa”) = 2 we

look at this location, and insert

his phone number here

LINEAR PROBING

Data search phase

CSCE 2014 - Programming Foundations II 41

Index Name Phone

0

1 White, Betty 521-6543

2 Claus, Santa 123-4567

3 Brown, Jim 521-9876

4

5

6 Jones, Tom 521-1234

7

8

If hash(“Claus, Santa”) = 2 we

look at this location, and insert

his phone number here

LINEAR PROBING

class HashTable

{

public:

HashTable(int size);

HashTable(const HashTable & ht);

~HashTable();

bool Insert(string key, int value);

bool Search(string key, int &value);

bool Delete(string key);

void Print();

CSCE 2014 - Programming Foundations II 42

Constructors and destructor

Hash table API

methods for insertion,

search and deletion

LINEAR PROBING

...

private:

int Hash(string key);

int Hash2(int index);

int Size;

int *Value;

string *Key;

};

CSCE 2014 - Programming Foundations II 43

Private methods to

calculate the hash

value for the key

Dynamic arrays to

store the search key

and data values

LINEAR PROBING

HashTable::HashTable(int size)

{

Size = size;

Value = new int[Size];

Key = new string[Size];

for (int index = 0; index < Size; index++)

{

Value[index] = NONE;

Key[index] = EMPTY;

}

}

CSCE 2014 - Programming Foundations II 44

Allocate dynamic arrays for the

search key and data values

Initial both arrays to

special “empty” values

LINEAR PROBING

bool HashTable::Insert(string key, int value)

{

// Find desired key

int index = Hash(key);

while ((Key[index] != key) && (Key[index] != EMPTY))

index = Hash2(index);

// Insert value into hash table

Value[index] = value;

Key[index] = key;

return true;

}

CSCE 2014 - Programming Foundations II 45

Loop over hash table

to find desired key or

an empty location

Store key and value at

this hash table location

LINEAR PROBING

bool HashTable::Search(string key, int &value)

{

// Find desired key

int index = Hash(key);

while ((Key[index] != key) && (Key[index] != EMPTY))

index = Hash2(index);

// Return value from hash table

if (Key[index] == key)

value = Value[index];

return (Key[index] == key);

}

CSCE 2014 - Programming Foundations II 46

Loop over hash table

to find desired key or

an empty location

If the key is found, save

corresponding value in

reference parameter

LINEAR PROBING

bool HashTable::Delete(string key)

{

// Find desired key

int index = Hash(key);

while ((Key[index] != key) && (Key[index] != EMPTY))

index = Hash2(index);

// Delete value from hash table

if (Key[index] == key)

{

Key[index] = DELETED;

return true;

}

return false;

}
CSCE 2014 - Programming Foundations II 47

Loop over hash table

to find desired key or

an empty location

We store a special

“deleted” value in key so

search function works

LINEAR PROBING

int HashTable::Hash(string key)

{

int num = 42;

for (int i = 0; i < int(key.length()); i++)

num = (num * 17 + key[i]) % Size;

return num;

}

int HashTable::Hash2(int index)

{

return (index + 1) % Size;

}

CSCE 2014 - Programming Foundations II 48

We go to next hash table

location (with wrap around)

We calculate the hash

value as weighted sum

of letters in string

LINEAR PROBING

HashTable::~HashTable()

{

if (Value != NULL)

delete[]Value;

if (Key != NULL)

delete[]Key;

Value = NULL;

Key = NULL;

Size = 0;

}

CSCE 2014 - Programming Foundations II 49

First we release the

memory for the

dynamic arrays

Then we set pointers to

NULL (not really needed

but good practice)

LINEAR PROBING

▪ The implementation of linear probing is fast and easy

▪ It can be easily extended to different key data types

▪ The data field can also be expanded as needed

▪ Linear probing works well

▪ When hash table has lots of empty locations (20% full)

▪ When the hash function is uniformly distributed

▪ Linear probing works poorly

▪ When the hash table becomes nearly full (90% full)

▪ When the hash function produces large clusters of values

CSCE 2014 - Programming Foundations II 50

HASH TABLES

DOUBLE HASHING

DOUBLE HASHING

• One problem with linear probing

• When collisions occur during insertion the linear probing

approach puts new data in the next empty array location

• This may create clusters of values in the hash table

• Insertions and searches within this cluster may require

multiple probes to find desired record (or empty spot)

• This extra probing can really slow down the hash table

CSCE 2014 - Programming Foundations II 52

Step size = 1Step size = 1

DOUBLE HASHING

▪ The solution is to modify the probing algorithm

▪ Instead of probing one location at a time we jump forward

multiple locations in the array

▪ To decide what step size to use, we use a second hash

function based on the key or index

▪ This reduces chance of clustering in the hash table

CSCE 2014 - Programming Foundations II 53

Step size = 2 Step size = 4

DOUBLE HASHING

• The double hashing algorithm for inserting data into a

hash table is very similar to linear probing

• We calculate the hash value for the input data

• We look at that location in the hash table

• If the location is empty, we insert the data

• If the location is already occupied, we use a second hash

function to calculate the step size for probing the array

• We jump forward step locations in the hash table and

continue until an empty location is found to insert data

• We use modulo operation to “wrap around” index

• We will illustrate the insertion process using phone data

CSCE 2014 - Programming Foundations II 54

DOUBLE HASHING

Data insertion phase

• Assume that we have already

inserted two phone records

into the hash table

CSCE 2014 - Programming Foundations II 55

Index Name Phone

0

1 White, Betty 521-6543

2

3

4

5

6 Jones, Tom 521-1234

7

8

DOUBLE HASHING

Data insertion phase

• Want to insert phone record

with hash(“Smith, John”) = 2

• Location 2 is empty, so we

insert new data there

CSCE 2014 - Programming Foundations II 56

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3

4

5

6 Jones, Tom 521-1234

7

8

DOUBLE HASHING

Data insertion phase

• Want to insert phone record

with hash(“Brown, Jim”) = 1

• Location 1 is full so we

calculate hash2(1) = 3

• Location 1+3=4 is empty so

we insert the record there

CSCE 2014 - Programming Foundations II 57

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3

4 Brown, Jim 521-9876

5

6 Jones, Tom 521-1234

7

8

DOUBLE HASHING

Data insertion phase

• Want to insert phone record

with hash(“Adams, Doug”) = 1

• Location 1 is full so we

calculate hash2(1) = 3

• Location 1+3=4 is also full so

we jump forward again

• Location 4+3=7 is empty so

we insert the record there

CSCE 2014 - Programming Foundations II 58

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3

4 Brown, Jim 521-9876

5

6 Jones, Tom 521-1234

7 Adams, Doug 521-4242

8

DOUBLE HASHING

▪ When we search the hash table we use hash2 to control

the step size for probing the array

• We calculate hash(key) to get initial index into hash table

• If the data there matches the key, the search was success

• If the location is empty, the search was unsuccessful

• If the data at first location does not match key, we use

hash2 to get step size, add to index, check location.

• This process repeats until we either find the data or an

empty location (when key not found)

CSCE 2014 - Programming Foundations II 59

DOUBLE HASHING

Data search phase

• Search for phone record with

hash(“Jones, Tom”) = 6

• Location 6 does match so

phone record was found

CSCE 2014 - Programming Foundations II 60

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3

4 Brown, Jim 521-9876

5

6 Jones, Tom 521-1234

7 Adams, Doug 521-4242

8

DOUBLE HASHING

Data search phase

• Search for phone record with

hash(“Brown, Jim”) = 1

• Location 1 does not match so

calculate hash2(1) = 3

• Location 1+3=4 does match

so phone record was found

CSCE 2014 - Programming Foundations II 61

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3

4 Brown, Jim 521-9876

5

6 Jones, Tom 521-1234

7 Adams, Doug 521-4242

8

DOUBLE HASHING

Data search phase

• Search for phone record with

hash(“Claus, Santa”) = 6

• Location 6 does not match so

calculate hash2(6) = 2

• Location 6+2=8 is empty so

phone record was not found

CSCE 2014 - Programming Foundations II 62

Index Name Phone

0

1 White, Betty 521-6543

2 Smith, John 521-3456

3

4 Brown, Jim 521-9876

5

6 Jones, Tom 521-1234

7 Adams, Doug 521-4242

8

DOUBLE HASHING

▪ With double hashing we need to wrap around the search

index whenever we get to the bottom of the hash table

▪ This is done with the modulo operator

▪ If size of hash table is N we step forward using

index = (index + step) % N

▪ We can get into big trouble if step is a multiple of N

▪ If N=10 and step=2 and hash(key)=3 we will probe

locations 3, 5, 7, 9, 1, 3, 5, 7, 9, 1, etc.

▪ We will never probe even locations in the array

▪ Solution is to make hash table size N a prime number

CSCE 2014 - Programming Foundations II 63

HASH TABLES

HASH BUCKETS

HASH BUCKETS

▪ With linear probing and double hashing, it is possible for

the hash function to go to any location in the array

▪ The idea behind hash buckets is to define a hash function

that only returns index values that are multiples of K

▪ This divides the array into N/K buckets of length K

CSCE 2014 - Programming Foundations II 65

Bucket 0 Bucket 1 Bucket 2 Bucket 3

HASH BUCKETS

▪ When we insert data into the hash table, we fill each

bucket from left to right

▪ The hash function will take us to first location in bucket

▪ If this location is empty, we store data there

CSCE 2014 - Programming Foundations II 66

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Hash=4

HASH BUCKETS

▪ When we insert data into the hash table, we fill each

bucket from left to right

▪ The hash function will take us to first location in bucket

▪ If this location is empty, we store data there

CSCE 2014 - Programming Foundations II 67

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Hash=12

HASH BUCKETS

▪ When we insert data into the hash table, we fill each

bucket from left to right

▪ The hash function will take us to first location in bucket

▪ If this location is empty, we store data there

CSCE 2014 - Programming Foundations II 68

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Hash=0

HASH BUCKETS

▪ When we insert data into the hash table, we fill each

bucket from left to right

▪ The hash function will take us to first location in bucket

▪ If this location is empty, we store data there

▪ Else we do linear probing to find an empty spot

CSCE 2014 - Programming Foundations II 69

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Hash=4, Insert=5

HASH BUCKETS

▪ When we insert data into the hash table, we fill each

bucket from left to right

▪ The hash function will take us to first location in bucket

▪ If this location is empty, we store data there

▪ Linear probing to find empty spot may go beyond bucket

CSCE 2014 - Programming Foundations II 70

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Hash=4, Insert=8

HASH BUCKETS

▪ The only difference between hash buckets and linear

probing is in the hash function

▪ To create a hash function that returns a multiple of K we

multiply the old hash value by K and do mod N again

NewHash(key) = (OldHash(key) * K) % N

▪ Clusters of values can occur with hash buckets but they

typically effect only one hash index

▪ Trick is to select value of K to minimize the total number of

collisions that occur during insertion and search

CSCE 2014 - Programming Foundations II 71

HASH TABLES

SEPARATE CHAINING

SEPARATE CHAINING

▪ All of the hash table techniques above are examples of

“open addressing” algorithms

▪ Hash table data is stored in an array of size N

▪ We use hash(key) and hash2(index) to probe this array for

empty locations when inserting data

▪ We use hash(key) and hash2(index) to search this array

for the desired data

▪ Because the hash table has a fixed size, it is possible for

the hash table to become full, which is never good

▪ What is the alternative to a fixed size array?

▪ Use a dynamic data structure to store records

CSCE 2014 - Programming Foundations II 73

SEPARATE CHAINING

▪ The separate chaining approach uses an array of linked

lists to store the hash table data

▪ When multiple pieces of data hash to the same location we

simply insert them into a linked list at that location

CSCE 2014 - Programming Foundations II 74

SEPARATE CHAINING

▪ How do we insert data with separate chaining?

▪ Adapt linked list code so each node can store one piece of

hash table data (e.g. name and phone number)

▪ Use hash(key) to find the linked list to insert data

▪ Call linked list insert method to store data in this linked list

▪ How fast is this?

▪ If we use “insert at head” approach the insertion is trivial

▪ If we use “sorted insert” approach the insertion has to walk

halfway down the linked list on average

▪ Most people use “insert at head”

CSCE 2014 - Programming Foundations II 75

SEPARATE CHAINING

▪ How do we search for data with separate chaining?

▪ Adapt linked list class so each node can store one piece of

hash table data (e.g. name and phone number)

▪ Use hash(key) to find the linked list to search

▪ Call linked list search method to walk this linked list until

you find a match (or the end of the linked list)

▪ How fast is this?

▪ If the linked list is short, this search is fast

▪ If the linked list is long, this search is slow

▪ Hence we want a hash function that minimizes collisions

CSCE 2014 - Programming Foundations II 76

SEPARATE CHAINING

class HashTable

{

public:

HashTable(int size);

HashTable(const HashTable & ht);

~HashTable();

bool Insert(string key, int value);

bool Search(string key, int &value);

bool Delete(string key);

void Print();

CSCE 2014 - Programming Foundations II 77

Constructors and destructor

Hash table API

methods for insertion,

search and deletion

SEPARATE CHAINING

...

private:

// Private methods

int Hash(string key);

// Private data

int Size;

List *Table;

};

CSCE 2014 - Programming Foundations II 78

Private method to

calculate the hash

value for the key

Dynamic array of

linked lists to store

hash table data

SEPARATE CHAINING

HashTable::HashTable(int size)

{

Size = size;

Table = new List[Size];

}

HashTable::~HashTable()

{. // delete lists first

Size = 0;

delete [] Table;

}

CSCE 2014 - Programming Foundations II 79

Create dynamic array

of linked lists

Release memory for

dynamic array of lists

SEPARATE CHAINING

bool HashTable::Insert(string key, int value)

{

// Find hash index

int index = Hash(key);

return Table[index].Insert(key, value);

}

CSCE 2014 - Programming Foundations II 80

Use hash function to

calculate array index

Call insert method to add

record to this linked list

SEPARATE CHAINING

bool HashTable::Search(string key, int &value)

{

// Find hash index

int index = Hash(key);

return Table[index].Search(key, value);

}

CSCE 2014 - Programming Foundations II 81

Use hash function to

calculate array index

Call search method to find

record in this linked list

SEPARATE CHAINING

bool HashTable::Delete(string key)

{

// Find hash index

int index = Hash(key);

return Table[index].Delete(key);

}

CSCE 2014 - Programming Foundations II 82

Use hash function to

calculate array index

Call delete method to remove

record from this linked list

SEPARATE CHAINING

▪ Advantages:

▪ Separate chaining is trivial to implement once you have a

linked list for storing hash table data

▪ Hash tables using separate chaining can never become

full because the linked lists can never become full

▪ Disadvantages:

▪ There is some operating system overhead allocating and

freeing memory for linked list nodes

▪ Search can be slow if linked lists become long

CSCE 2014 - Programming Foundations II 83

HASH TABLES

SPEED ANALYSIS

SPEED ANALYSIS

▪ Speed of hashing depends on the expected number of

probes needed during insertion or search

▪ This is a function of how full the hash table is

▪ Let be the fraction of the table that is currently full

▪ For each probe find the odds location is occupied or empty

CSCE 2014 - Programming Foundations II 85

Probe Occupied Empty

1 (1-)
2 (1-)
3 (1-)

4 (1-)

...

n n (1-)n-1

Odds to find empty

location after 1 probe

is (1-)

SPEED ANALYSIS

▪ Speed of hashing depends on the expected number of

probes needed during insertion or search

▪ This is a function of how full the hash table is

▪ Let be the fraction of the table that is currently full

▪ For each probe find the odds location is occupied or empty

CSCE 2014 - Programming Foundations II 86

Probe Occupied Empty

1 (1-)
2 (1-)
3 (1-)

4 (1-)

...

n n (1-)n-1

Odds to find empty

location after 2 probes

is (1-) times the odds

occupied after 1 probe

SPEED ANALYSIS

▪ Speed of hashing depends on the expected number of

probes needed during insertion or search

▪ This is a function of how full the hash table is

▪ Let be the fraction of the table that is currently full

▪ For each probe find the odds location is occupied or empty

CSCE 2014 - Programming Foundations II 87

Probe Occupied Empty

1 (1-)
2 (1-)
3 (1-)

4 (1-)

...

n n (1-)n-1

Odds to find empty

location after 3 probes

is (1-) times the odds

occupied after 2 probes

SPEED ANALYSIS

▪ Speed of hashing depends on the expected number of

probes needed during insertion or search

▪ This is a function of how full the hash table is

▪ Let be the fraction of the table that is currently full

▪ For each probe find the odds location is occupied or empty

CSCE 2014 - Programming Foundations II 88

Probe Occupied Empty

1 (1-)
2 (1-)
3 (1-)

4 (1-)

...

n n (1-)n-1

Odds to find empty

location after 4 probes

is (1-) times the odds

occupied after 3 probes

SPEED ANALYSIS

▪ Speed of hashing depends on the expected number of

probes needed during insertion or search

▪ This is a function of how full the hash table is

▪ Let be the fraction of the table that is currently full

▪ For each probe find the odds location is occupied or empty

CSCE 2014 - Programming Foundations II 89

Probe Occupied Empty

1 (1-)
2 (1-)
3 (1-)

4 (1-)

...

n n (1-)n-1

Finally odds to find

empty location after n

probes

SPEED ANALYSIS

▪ How can we calculate the expected number of probes to

find an empty location in the hash table?

S(n) = 1*(1-) + 2*(1-) + 3*(1-)2 + … n*(1-)n-1

▪ Calculate sum of num_probes * odds_empty

CSCE 2014 - Programming Foundations II 90

SPEED ANALYSIS

▪ How can we calculate the expected number of probes to

find an empty location in the hash table?

S(n) = 1*(1-) + 2*(1-) + 3*(1-)2 + … n*(1-)n-1

S(n) = 1(1-) + 2*(1-)2 + 3*(1-)3 + … n*(1-)n-1

▪ Multiply both sides by

CSCE 2014 - Programming Foundations II 91

SPEED ANALYSIS

▪ How can we calculate the expected number of probes to

find an empty location in the hash table?

S(n) = 1*(1-) + 2*(1-) + 3*(1-)2 + … n*(1-)n-1

S(n) = 1(1-) + 2*(1-)2 + 3*(1-)3 + … n*(1-)n-1

(1-)*S(n) = (1-) + (1-) + (1-)2 + (1-)3 + … (1-)n-1

▪ Subtract line 2 from line 1 to cancel integer coefficients

CSCE 2014 - Programming Foundations II 92

SPEED ANALYSIS

▪ How can we calculate the expected number of probes to

find an empty location in the hash table?

S(n) = 1*(1-) + 2*(1-) + 3*(1-)2 + … n*(1-)n-1

S(n) = 1(1-) + 2*(1-)2 + 3*(1-)3 + … n*(1-)n-1

(1-)*S(n) = (1-) + (1-) + (1-)2 + (1-)3 + … (1-)n-1

S(n) = 1 + + 2 + 3 + … n-1

▪ Divide both sides by (1-) to simplify formula

CSCE 2014 - Programming Foundations II 93

SPEED ANALYSIS

▪ How can we calculate the expected number of probes to

find an empty location in the hash table?

S(n) = 1*(1-) + 2*(1-) + 3*(1-)2 + … n*(1-)n-1

S(n) = 1(1-) + 2*(1-)2 + 3*(1-)3 + … n*(1-)n-1

(1-)*S(n) = (1-) + (1-) + (1-)2 + (1-)3 + … (1-)n-1

S(n) = 1 + + 2 + 3 + … n-1

S(n) - *S(n) = 1

▪ Subtract *S(n) from both sides to cancel terms

CSCE 2014 - Programming Foundations II 94

SPEED ANALYSIS

▪ How can we calculate the expected number of probes to

find an empty location in the hash table?

S(n) = 1*(1-) + 2*(1-) + 3*(1-)2 + … n*(1-)n-1

S(n) = 1(1-) + 2*(1-)2 + 3*(1-)3 + … n*(1-)n-1

(1-)*S(n) = (1-) + (1-) + (1-)2 + (1-)3 + … (1-)n-1

S(n) = 1 + + 2 + 3 + … n-1

S(n) - *S(n) = 1

S(n) = 1 / (1-)

▪ Divide both sides by (1-) to get closed form solution

CSCE 2014 - Programming Foundations II 95

SPEED ANALYSIS

▪ What does S(n) = 1 / (1-) mean?

▪ The number of probes does not depend on amount of data
being stored, it only depends on how full the hash table is

▪ How should we choose the hash table size?

▪ When = 0.9, we will have 10 probes on average

▪ When = 0.5, we will have 2 probes on average

▪ When = 0.33 we will have 1.5 probes on average

▪ When = 0.25 we will have 1.33 probes on average

▪ When = 0.1 we will have 1.1 probes on average

▪ Common choice to to make hash table 2-4 times larger
than the amount of data being stored

CSCE 2014 - Programming Foundations II 96

HASH TABLES

SUMMARY

SUMMARY

▪ In this section we described how hash functions can be

used to convert data fields into hash table locations

▪ We described four hash table implementations

▪ Linear probing jumps to hash location, and searches hash

array one location at a time

▪ Double hashing jumps to the hash location and searches

with step size determined by second hash function

▪ Hash buckets are a variation on linear probing where the

initial hash locations are K locations apart in the array

▪ Separate chaining uses an array of linked lists to store and

search for hash table data

CSCE 2014 - Programming Foundations II 98

	Slide 1: Hash tables
	Slide 2: overview
	Slide 3: overview
	Slide 4: overview
	Slide 5: overview
	Slide 6: overview
	Slide 7: overview
	Slide 8: overview
	Slide 9: overview
	Slide 10: overview
	Slide 11: OVERVIEW
	Slide 12: overview
	Slide 13: overview
	Slide 14: overview
	Slide 15: overview
	Slide 16: overview
	Slide 17: Hash tables
	Slide 18: Hash functions
	Slide 19: Hash functions
	Slide 20: Hash functions
	Slide 21: Hash functions
	Slide 22: Hash functions
	Slide 23: Hash functions
	Slide 24: Hash tables
	Slide 25: Linear probing
	Slide 26: Linear probing
	Slide 27: Linear probing
	Slide 28: Linear probing
	Slide 29: Linear probing
	Slide 30: Linear probing
	Slide 31: Linear probing
	Slide 32: Linear probing
	Slide 33: Linear probing
	Slide 34: Linear probing
	Slide 35: Linear probing
	Slide 36: Linear probing
	Slide 37: Linear probing
	Slide 38: Linear probing
	Slide 39: Linear probing
	Slide 40: Linear probing
	Slide 41: Linear probing
	Slide 42: Linear probing
	Slide 43: Linear probing
	Slide 44: Linear probing
	Slide 45: Linear probing
	Slide 46: Linear probing
	Slide 47: Linear probing
	Slide 48: Linear probing
	Slide 49: Linear probing
	Slide 50: Linear probing
	Slide 51: Hash tables
	Slide 52: Double hashing
	Slide 53: Double hashing
	Slide 54: Double hashing
	Slide 55: Double hashing
	Slide 56: Double hashing
	Slide 57: Double hashing
	Slide 58: Double hashing
	Slide 59: Double hashing
	Slide 60: Double hashing
	Slide 61: Double hashing
	Slide 62: Double hashing
	Slide 63: Double hashing
	Slide 64: Hash tables
	Slide 65: Hash buckets
	Slide 66: Hash buckets
	Slide 67: Hash buckets
	Slide 68: Hash buckets
	Slide 69: Hash buckets
	Slide 70: Hash buckets
	Slide 71: Hash buckets
	Slide 72: Hash tables
	Slide 73: Separate chaining
	Slide 74: Separate chaining
	Slide 75: Separate chaining
	Slide 76: Separate chaining
	Slide 77: Separate chaining
	Slide 78: Separate chaining
	Slide 79: Separate chaining
	Slide 80: Separate chaining
	Slide 81: Separate chaining
	Slide 82: Separate chaining
	Slide 83: Separate chaining
	Slide 84: Hash tables
	Slide 85: Speed analysis
	Slide 86: Speed analysis
	Slide 87: Speed analysis
	Slide 88: Speed analysis
	Slide 89: Speed analysis
	Slide 90: Speed analysis
	Slide 91: Speed analysis
	Slide 92: Speed analysis
	Slide 93: Speed analysis
	Slide 94: Speed analysis
	Slide 95: Speed analysis
	Slide 96: Speed analysis
	Slide 97: Hash tables
	Slide 98: summary

